

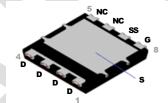
Gallium Nitride E-mode HEMT GS650EDA165A: 165 m Ω , 650V

Description

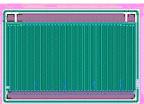
Gallium Nitride High-Electron-Mobility Transistors (HEMTs) have shown outstanding results in high power applications. The large bandgap results in a high breakdown field, allowing for high operating voltages. Its inherent two-dimensional electron gas (2-DEG) at the AlGaN/GaN interface yields a high electron sheet charge density and mobility, significantly reducing resistive losses in power transistors. Additionally, due to the low gate charge and reverse recovery charge, the switching losses are reduced and switching speeds increased compared to traditional silicon power devices. The p-GaN gate is implemented to ensure the desired enhancement mode (normally-off) operation and improved slew rates.

The GS650EDA165A can be delivered as separate dice in waffle pack or packaged in a DFN 8x8 or DFN 5x6 with exposed paddle allowing an excellent thermal contact.

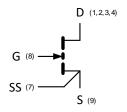
Features


- 650V enhancement mode power transistor
- 850V transient drain-to-source voltage
- RDS,ON = 165 mΩ
- IDS,MAX = 10 A
- Ultra-low FOM
- Simple gate drive requirements: 0 to 6 V
- Transient tolerant gate drive: -20 V / +10 V
- High switching frequency > 1 MHz
- Reverse conduction capability
- Zero reverse recovery loss

Applications


- Wall wart adapters
- Power Factor Correction
- LED drivers
- Battery Chargers
- Industrial Power Supplies
- Motor drivers

Outline


Package

Die

Symbol

Ordering

The GS650EDA165A is not a product for sale. It is a product sample to demonstrate the capabilities of the Power GaN process.

Absolute Maximum Ratings (T_J = 25°C unless otherwise noted)

Table 1

Parameter	Symbol	Value	Unit
Operating Junction Temperature	TJ	-55 to +150	°C
Drain to Source Voltage	V _{DS}	650	V
Drain to Source Voltage – transient (note 1)	$V_{DS,trans}$	850	V
Gate to Source Voltage	V _{GS}	-10 to +7	V
Gate to Source Voltage – transient (note 1)	$V_{GS,trans}$	-20 to + 10	V
Drain Current – continue	I _{DS}	10	Α
Pulsed Drain Current (note 2)	I _{DS,P}	17	Α

- (1) For $t \le 1 \mu s$
- (2) Pulse width 10 μ s, $V_{GS} = 6 \text{ V}$

Thermal Characteristics QFN 8x8 (Typical Values unless otherwise noted)

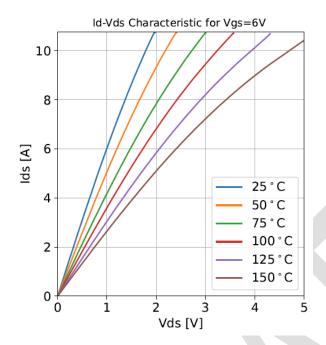
Table 2

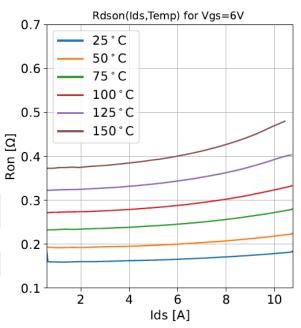
Parameter	Symbol	Value	Unit
Thermal Resistance Junction – to – Case	R _{⊛-JC}	1,4	K/W
Thermal Resistance Junction – to – Ambient (3)	$R_{\Theta ext{-JA}}$	36,5	K/W
Maximum Solder Temperature	T_{SOLD}	260	°C

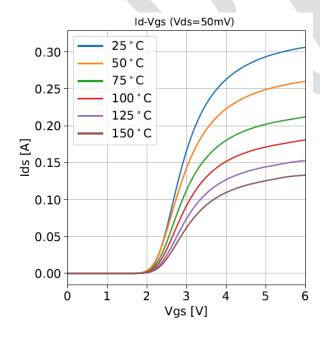
(3) JEDEC JESD51

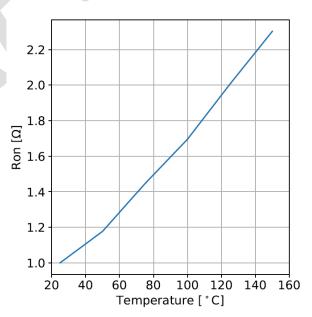
Electrical Characteristics (Typical Values @ T_J = 25°C unless otherwise noted)

Table 3

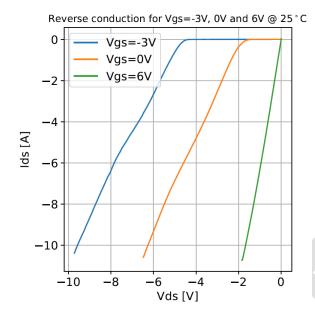

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Drain to Source Blocking	$V_{GS} = 0 \text{ V}, I_{DSS} \le 18 \mu\text{A}$	V _{BDSS}	650			V
Voltage						
On Resistance	$V_{GS} = 6 \text{ V}, I_{DS} = 1 \text{ A}$	R _{DSon}		165	220	mΩ
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{DS} = 1.3 \text{ mA}$	V_{Th}	0.9	2.0	3.0	V
Gate to Source Current	$V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GS}		290		μΑ
Drain to Source Leakage	$V_{DSS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}		0,7		μΑ
Current						•
Input Capacitance	V _{DS} = 400 V	C _{ISS}		85		pF
Output Capacitance	$V_{DS} = 400 \text{ V}$ $V_{GS} = 0 \text{ V}$	Coss		41		pF
Reverse Transfer	f = 100 kHz	C _{RSS}		0,04		pF
Capacitance	1 = 100 KHZ					
Output Charge	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}$	Qoss		27,3		nC
Output Cap stored energy	$V_{DS} = 400 \text{ V}$	Eoss		4,2		μJ
	$V_{GS} = 0 \text{ V, f} = 100 \text{ kHz}$					
Total Gate Charge	Vds = 0 to 400 V,	Qg		2,2		nC
	Vgs = 0 to 6 V					
Effective Output	Vds = 0 to 400 V,	Co _(er)		52,5		pF
Capacitance, Energy	Vgs = 0 V					
related						
Effective Output	Vds = 0 to 400 V,	Co _(tr)		68,2		pF
Capacitance, Time related	Vgs = 0 V					

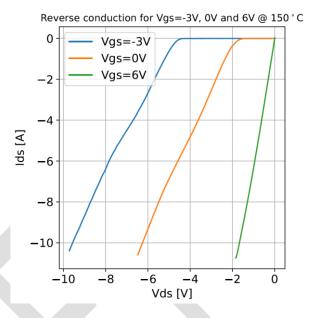

Note: Figures are based on a linear scaling of the 120 m Ω transistor

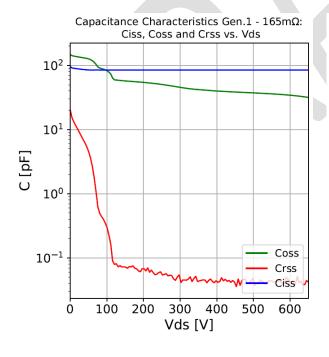

Rev 11032024 © 2024 Gansic 2

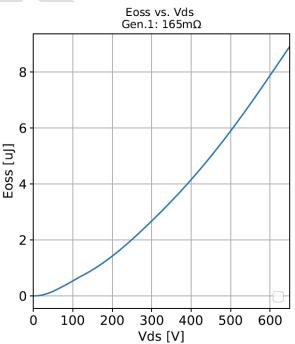


Electrical Graphs (1/2)






Rev 11032024 © 2024 Gansic 3



Electrical Graphs (2/2)

Test Circuits

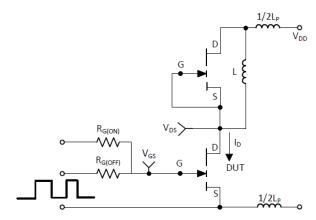


Fig 13: Switching Test Circuit

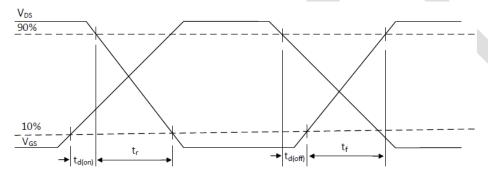
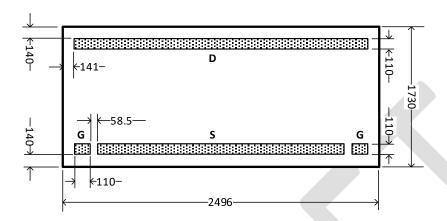
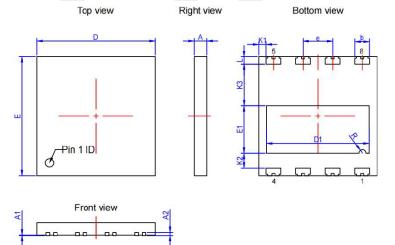


Fig 14: Switching Time Waveforms

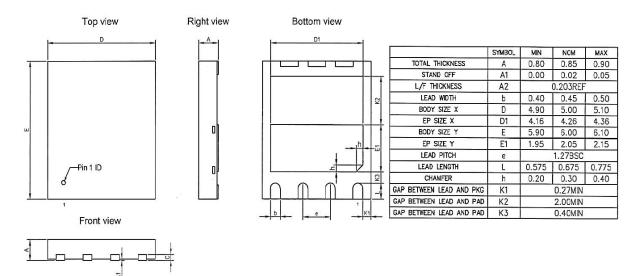


Package Information

Bare Die


Dimensions of the pads in μm refer to the passivation and polyimide opening. Drawing is not to scale.

Marking


DFN 8x8

	SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS	Α	0.75	0.85	0.95	
STAND OFF	A1	0.00	0.03	0.05	
L/F THICKNESS	A2	0.203REF			
LEAD WIDTH	Ь	0.95	1.00	1.05	
BODY SIZE X	D	7.90	8.00	8.10	
EP SIZE X	D1	6.84	6.94	7.04	
BODY SIZE Y	E	7.90	8.00	8.10	
EP SIZE Y	E1	3.10	3.20	3.30	
LEAD PITCH	е	2.00BSC			
SPACING	K1	0.40	0.50	0.60	
SPACING	K2	0.90	1.00	1.10	
SPACING	K3	2.70	2.80	2.90	
LEAD LENGTH	L	0.40	0.50	0.60	
RADIUS	R	0.15	0.25	0.35	

DFN 5x6

Disclaimer

This Product Sample is not a finished product and is not available for sale to consumers. The Product Sample is only intended for research, development, demonstration, and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. These persons assume full responsibility/liability for proper and safe handling of the Product Sample. Any other use, resale or redistribution of the Product Sample for any other purpose is strictly prohibited.